
REDUCING COSTS OF MANAGING AND ACCESSING NAVIGATION AND
ANCILLARY DATA BY RELYING ON THE EXTENSIVE CAPABILITIES OF NASA's

SPICE SYSTEM

Boris V. Semenov'", Charles H. Acton, Jr.('), Nathaniel J. Bachman"), Lee S. Elson"), Edward D. Wright 'l)

(I) Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA, 91 109, USA, Email: Name.Surname@pl.nasa.gov

ABSTRACT

The SPICE system of navigation and ancillary data
possesses a number of traits that make its use in modern
space missions of all types highly cost efficient. The
core of the system is a software library providing API
interfaces for storing and retrieving such data as
trajectories, orientations, time conversions, and
instrument geometry parameters. Applications used at
any stage of a mission life cycle can call SPICE APIs to
access this data and compute geometric quantities
required for observation planning, engineering
assessment and science data analysis. SPICE is
implemented in three different languages, supported on
20+ computer environments, and distributed with
complete source code and documentation. It includes
capabilities that are extensively tested by everyday use
in many active projects and are applicable to all types of
space missions - flyby, orbiters, observatories, landers
and rovers. While a customer's initial SPICE adaptation
for the first mission or experiment requires a modest
effort, this initial effort pays off because adaptation for
subsequent missionslexperiments is just a small fraction
of the initial investment, with the majority of tools
based on SPICE requiring no or very minor changes.

1. Introduction

SPICE is a system of navigation and ancillary data
developed under the direction of NASA's Science
Directorate by the Navigation and Ancillary Information
Facility (NAIF) group at the Jet Propulsion Laboratory.
The purpose of SPICE is to assist scientists in planning
observations for, and analyzing data from space-borne
instruments, and to assist engineers involved in
modelling, planning and executing activities needed to
conduct space exploration missions. The two primary
parts of SPICE are data files, called "kernels",
containing various navigation and other ancillary
information, structured and formatted for easy access
and correct use, and software, called the SPICE Toolkit,
used to access the data and calculate various observation
geometry parameters of interest.

As a concept of carefully archiving the fundamental
navigation and ancillary data sets needed to derive
observation geometry parameters, SPICE was first
proposed in 1983 by NASA's Planetary Data Workshop.
This proposal followed the recommendation for archival

treatment of data made by the National Research
Council's Committee on Data Management and
Computation (CODMAC) [l]. A year later, in 1984, as
the concept was refined during the development of the
Pilot Planetary Data System, the SPICE acronym,
identifying the major system components, was
introduced. To prove the concept a set of data formats
and related software - a pre-cursor to SPICE - was
implemented and used to support the Voyager Neptune
and Uranus flybys. Successful demonstration on
Voyager gave a green light to the development of the
current SPICE system, which started in 1989. As the
system matured, Magellan became the first mission that
officially used SPICE in operations by generating and
distributing spacecraft trajectory data in SPICE SPK
format. Following successful use of SPICE on
Magellan, both Mars Observer and Galileo chose SPICE
as the replacement for the Supplemental Experiment
Data Records (SEDR) system previously used for
providing and archiving navigation data and ancillary
on earlier U.S. planetary missions. Over the next decade
SPICE became an integral part of the ground operations
systems of, and the defacto standard for navigation and
ancillary data in NASA's solar system exploration
missions. As SPICE capabilities and recognition
increased, various space agencies outside of the U.S.
became interested in using it. In 2000 SPICE was
proposed and accepted by the European Mars Express
project as a supplementary (non-official) mechanism for
distribution of navigation data in support of science data
analysis and archiving. Later in 2004 SPICE was
adopted for the same purpose by three more European
Space Agency missions - Rosetta, Venus Express and
SMART-1. In the past two years SPICE had also been
deployed in support of science operations by the Japan
Space Exploration Agency's (JAXA) on the Hayabusa
and SELENE missions.

2. SPICEdata

The first major part of the SPICE system is data.
Different information types in SPICE are grouped
together into logical elements and stored in underlying
physical data files called "kernels" (see Fig. 1). Five
kernels - SPK, PCK, IK, CK, and EK, - whose first
letters make up the SPICE acronym, are the
"cornerstones" of SPICE. SPK (Spacecraft Planet
Kernel) deals with position information such as planet,

satellite, comet and asteroid ephemerides, spacecraft
tra”jectories, tracking station locations, landing sites,
rover path, and relative locations of science instruments
or instrument detectors. PCK (Planetary Constants
Kernel) provides parameters of the natural bodies
including data needed to compute orientation of the
body-fixed frames, using either IAU or high precision
(for Earth and Moon) models, as well as parameters
defining natural body shapes and sizes. IK (Instrument
Kernel) serves as a repository for science instrument
parameters needed to compute observation geometry,
including field-of-view definition, detector geometry
and timing offset specifications. CK (C-matrix Kernel)
deals with orientation data for spacecraft and moving
instrumelits or instrument parts. EK (Events Kernel)
provides various types of mission and spacecraft event
information such observations plans, records of
executed commands, and notes describing how
operations and observations were carried out.

In addition to the main five kernels, SPICE includes a
few extra elements and corresponding supporting data
files. Two of them - Leapseconds Kernel (LSK) and
Spacecraft Clock Kernel (SCLK) - contain data needed
to support conversions between the three main time
systems supported in SPICE: UTC, ephemeris time, and
spacecraft on-board time. The other critical element,
Frames Kernel (FK), defines reference frames,
associates them with orientation data provided in other
kernels, and establishes connections between them.

3. SPICE Software

The second second major part of the SPICE system is
software. The core of the SPICE software is a library
that provides API interfaces for accessing data from
various kernels as well for computing a large number of
derived space geometry quantities using this data. User-
developed applications call APIs provided in this library
to compute and manipulate position and velocity vectors
and reference frame transformations, calculate sub-
spacecraft and surface intercept points and illumination
conditions at these points, perform time conversions, as
well as to access many other geometry functions. While
the library includes over 1,000 functions, its hierarchical
architecture makes it possible to utilize only a handful
of the highest-level APIs to access and combine data
from all SPICE kernels provided to a user-developed
SPICE based applications. For example, if sufficient
data is available, the two highest level APIs providing
access to trajectory data can compute relative position
or state vectors, either geometric or corrected for light
time and/or stellar aberration, of any spacecraft or
natural bodies, tracking stations or other surface
locations given in any of a large number of references
frames including inertial, body-fixed, topocentric,
spacecraft, science instrument, spacecraft structure
frames as well as frames defined using dynamic (time
varying) basis vectors.

One of the main reasons why use of SPICE by planetary
mission engineering and science communities has

Navigation and Ancillary Information ... stored in ... SPICE Data Files, “Kernels”. ... accessed via ... SPICE Toolkit APIs

New Mission
.> Studies

)I Brission
*‘ .+ Design

,,’ Operations
,

and
1(-’ Observations

-‘ Planning

SPICE Toolkit
APIs ---, Engineering

providing Assessment

,
1, Ancillary
‘3 Data

Archiving
Definitions

Diagram 1. SPICE Data and Software

grown steadily over its history is the fact that while
SPICE evolved to satisfy ever increasing requirements
of new missions and applications, it never turned away
existing users by changing the functionality that was
already in the system. Evolution is made possible by
planning for extensibility of all major SPICE
components, and the system as the whole. For example,
while the first version of SPICE supported only three
different representations of trajectory data, the current
system supports eighteen, such as Chebychev
polynomials, Lagrange and Hermit interpolation over
discrete state vectors, and two line element sets. Neither
small, such as addition of new SPK types, nor big
updates, such as introduction of a major new subsystem,
affected the way SPICE worked in existing applications
at the time when the changes were made. The backward
compatibility requirement that made this possible
became policy in SPICE development from the very
beginning and has been strictly adhered to throughout
the history of the system. Any public SPICE APIs made
available to users are guaranteed to be a part of the user
interface forever, with their original functionality
preserved or extended. The only exception to this policy
is change in functionality due to bug fixes. The same
backward compatibility policy is applied to the data
representations: any kernel file that could be used with
an earlier version of the system can be used in the same
way with all future versions. This important trait of the
SPICE system makes upgrading any SPICE-based
application to a newer version of SPICE, often
providing substantial additional capabilities, an easy
task with very low costs associated with it.

IDL

From the very beginning SPICE developers recognized
the diversity of the computing environments and
programming languages that exist in the science and
engineering communities of the space exploration
domain. Currently SPICE is provided in three languages
- FORTRAN, C, and IDL (Research Systems
Incorporated Interactive Data Language) - for PCs
running Windows, Linux, or Cygwin, Macs running
OSX, and Sun and HP workstations (see Tab. 1). More
than one compiler brand is supported for some of these
environments. This multi-platform nature of SPICE
facilitates its use by anyone in the space exploration
community, including those who build multi-platform
applications. Also, the fact that SPICE is available for
less expensive computer types as well as that it is ported
to a number of free operating systems and compilers
allows for its use in ground systems based on less
expensive computers, leading to substantial savings on
required hardware and third party software.

Sun, Solaris, gcc
Mac, OSX, Apple C, LDL 6.1
PC, Linux, gcc, IDL 6.1
PC, Windows, MS Visual C, IDL 6.1
Sun, Solaris, Sun C, IDL 6.1
Sun, Solaris, gcc, IDL 6.1

Maintaining identical functionality in the set of high-
level APIs implemented in different languages while
providing APIs and documentation native for each of
the languages was the main goal in the multi-language

PC, Windows, MS Visual C
Sun, Solaris, Sun C

Table 1. Supported Languages and Environments

SPICE development. Since at the time when SPICE
started FORTRAN was the language of choice in the
science and engineering space community, the core of
the SPICE system was developed and still exists in
FORTRAN. As the needs of the user community
evolved, the C language interface to SPICE, CSPICE,
was introduced. To achieve the goal stated earlier,
SPICE was not re-written in C at that time. Instead,
FORTRAN SPICE source code was first converted to C
using the public f2c conversion tool. Then a set of
“wrappers” having interfaces natural to C programmers
and calling the a c t e d code was added. Finally a
complete set of C specific documentation was added. A
similar approach was taken with the recently added
SPICE implementation in IDL, “ICY”. It was developed
as a set IDL routines calling CSPICE interfaces made
available to IDL via a shared object library. The fact
that all three implementation of SPICE - FORTRAN, C,
and IDL - provide the same set of high level APIs and
use the same underlying algorithms to access the data
and perform computations guarantees that the same
results will be returned to users no matter which
language is chosen. For example, a heritage downlink
scheduling tool calling FORTRAN SPICE, an attitude
control analysis application linked to CSPICE, and a
science observation planner’s IDL script invoking ICY
will compute the same spacecraft position for a given
time when they use the same high level SPICE APIs and
read the same SPICE data. While as of today SPICE is
released only in these three languages, it is important to
note that the CSPICE APIs can be and are called from
other languages, such as C++, Java, Matlab, perl,
python, and even MS Excel. The availability of SPICE
in a few languages together with the possibility to call

, SPICE APIs from many languages allows for great
di;ersity in developing applications calling SPICE. This
diversity often translates to greater efficiency in
developiag applications, which in turn leads to overall
savings on tools development.

Data portability is another important aspect of multi-
platform support that was addressed by SPICE from the
very beginning. Initially it was done by employing
conversion of SPICE’S binary file types to a special
transfer format so they could be moved to and converted
back to binary format on a computer using a different
binary architecture. While this mechanism is still
supported today, a few years ago SPICE was augmented
with the capability to read non-native binary files on big
endian (Unix and Mac) and little endian (PC) platforms.
This capability greatly simplifies SPICE data
management for both data producers and users, allowing
transparent access to SPICE binary data files on
computers with incompatible binary architectures. This,
for example, makes creating and maintaining large sets
of SPICE data on a Unix server while accessing them
via direct NFS mounts from a PC possible. Similar
capability for text data files is planned to be added to
the C and IDL implementations in the near future. (It is
not feasible for the FORTRAN implementation of the
system.)

SPICE is a true open source system as the SPICE
distribution packages include the complete set of source
modules for the main library and for the utility
programs provided with the toolkit. An important
attribute of the SPICE source code is that every module
is written following strict programming style guidelines
to ensure its readability and maintainability. In addition
to that every module is extensively documented with the
complete interface specification provided in the well-
structured block of comments, called the SPICE module
header, located at the top of the module. There are also
extensive in-line comments interspersed with the actual
code lines. Distribution of the well-documented source
code makes algorithm implementations available to the
users for inspection, thus eliminating the possibility of
treating any part of the SPICE system as a “black box”.
This feature is desirable in any software system that is
intended for use in critical operations.

In addition to SPICE headers that serve as the primary
and most comprehensive interface specification for each
of the SPICE APIs, a wealth of documentation
describing the system on many different levels is
distributed with the SPICE software. This
documentation includes reference documents covering
in detail all essential SPICE subsystems, user manual
documents for all utilities provided with the toolkit,
special index documents for quickly locating the APIs
of interest by name or functionality, and toolkit

description documents. In addition to the documentation
distributed with the toolkit, other types of informational
aids are available on the NAIF web site. Among them
are a comprehensive tutorial package comprised of
about 40 presentations covering all aspects of SPICE,
and a set of step-by-step programming lessons based on
real mission data. These tutorials and lessons are
intended for users just getting to know the SPICE
system, but also benefit those who have been long time
users since these packages are constantly improved and
updated to reflect new functionality that becomes
available in SPICE. Approximately twice a year NAIF
conducts seminars and training sessions based on these
packages. Most of these seminars are open to any
current or potential SPICE users, both in the U.S. and in
other countries.

Being a large software system - over 100,000
executable lines of code - SPICE has proven to be
virtually bug-free, which is a crucial characteristic for
any software used in space operations. The number of
bugs discovered in the system is less than ten per year,
with the majority of these bugs identified by the system
developers themselves and affecting only obscure usage
scenarios. This became possible due to the testing
procedures to which the SPICE development team
strictly adheres. Over the last ten years internal policies
in the SPICE development team require a
comprehensive set of test code be developed for and in
parallel with every new family of SPICE code. This
suite of test cases is used to verify all existing SPICE
functionality, as well as any additions, on all of the
supported computer environments when a new version
of the system is prepared for release. The diversity of
compiler brands and operating systems supported by
SPICE has proven to be instrumental in identifying
problems in the code prior to its release to the customer.
The fact that none of the functionality available in the
system was ever been retracted, combined with fact that
it has been exercised in numerous applications on many
flight projects, allows the NAIF team to rightfully call
the system “tried-and-true”.

4. SPICE Implementation for Space Missions

The capabilities of SPICE, built up as the result of
constant development and application in over twenty
space projects during the last one and half decades, are
truly multi-mission and applicable in space projects of
all types - flyby, orbiters, observatories, landers and
rovers (see Tab. 2). Of the current U.S. planetary orbiter
missions (Mars Global Surveyor, 2001 Mars Odyssey,
Cassini) and flyby missions (Stardust, Deep Impact),
SPICE is used in a variety of applications supporting
observation planning, communication scheduling,
pointing design and analysis, and science data analysis.
Of the current U.S. rover missions (Mars Exploration
Rovers) SPICE-based time conversion capabilities are

I Galileo I Hayabusa (JAXA) I
I Genesis I SELENE(JAXA)

[P]=partial use of SPICE, [S]=special tools or services provided by NAIF

Table 2. Past, current, and future space missions using SPICE system.

used through the ground system in planning and data
processing tools. Some U.S. space-based telescopes
(Hubble, Spitzer) utilize SPICE to plan observations of
Solar System bodies. Moreover, all but one current and
recent U.S. planetary mission use SPICE kernels as the
primary mechanism for storing and distributing
spacecraft position information within the project.

Since geometry information is needed across all phases
in the mission life cycle, SPICE can be successfully
utilized during every one of these phases. While new
mission studies can take great advantage of the wealth
of ephemeris data for planet, satellite, and small body
ephemerides available as SPICE kernels, more detailed
mission design activities make use of SPICE to perform
observation coverage and long-term telecom analyses.
During mission implementation the full power of SPICE
can be used virtually in all functions required for
planning and carrying out operations, from tactical
uplink and downlink scheduling, to supporting time
conversions through the ground system, and from
spacecraft performance analysis to computations of
geometry parameters required to support science data
archiving.

SPICE provides especially great benefits when it is
chosen as a standard for exchanging navigation and
ancillary data between various functions within a
project, both "along" the project life-cycle timeline and
"across" it, at any given point in project implementation.
When SPICE is used for this purpose, trajectory,
attitude and time correlation data provided in SPICE
kernels are produced and delivered to the project by
groups that possess expertise in a particular area, such
as orbit determination or attitude reconstruction. Since
SPICE provides substantial flexibility in the way data

are stored in SPICE kernels as well as transparency in
regards to how this data is accessed, the data producers
adjust the production to make sure the end users
accessing data through SPICE get correct position,
orientation, and time conversion information. For the
end users getting the "right" information becomes
simply a matter of picking up and using the "right"
SPICE kernels, making this essentially a file
management task easily solvable in modern automated
data production and delivery environments. SPICE SPK
files are used as a standard way of exchanging trajectory
data on all JPL planetary missions, with navigation team
producing SPK kernels and other project teams - from
DSN tracking services to science instrument teams -
using them in SPICE based applications to get
spacecraft position and velocity information. This helps
eliminate the risk of misinterpreting trajectory data.

As demonstrated by experience both inside and outside
of the US, the initial adaptation of SPlCE for the first
mission or experiment in a series, or at a new agency,
requires a modest effort. But this is greatly facilitated by
available detailed documentation and multi-mission data
production tools. Among the tools included in the
SPICE toolkit and freely distributed from the NAIF
server are programs for conversion of position and
orientation data, provided in a variety of representations
as simple text files, to the corresponding SPICE kernel
files. In addition to these programs NAIF has, in a few
cases, developed applications that provide similar
conversions for more specialized formats such as those
used by JPL navigation software and ESOC's Data
Distribution System. Actual SPICE kernels from past
and current missions, freely available from the NAIF
server and NASA's Planetary Data System, serve as a
template for creating SPICE kernels, especially for the

kernels types that contain constant information, such as
: PCK, FK, and IK.

The initial effort of setting up SPICE production and
usage has always paid off because SPICE adaptation for
subsequent missiondexperiments has always been just a
small fraction of the initial investment, with the
majority of tools based on SPICE requiring no or very
minor changes. For data producers the first time
deployment of SPICE means setting up conversion of
position, orientation, and time correlation data to SPICE
kernels. Most frequently this is done by developing a set
of easily automated processes, usually implemented by
scripts, invoking existing SPICE data production tools
and delivering SPICE kernels to one of the project data
servers. It also means creating the time-invariant SPICE
kernels (IK, FK, PCK) using SPICE and project
documentation. Similar kernels for other missions often
serve as examples. For data users, the first time
deployment of SPICE means incorporating calls to
relevant SPICE APIs into their applications and setting
up a process to obtain SPICE kernels from the data
server. For the next mission or experiment carried out
by the same agency or set of teams, only minor
configuration changes will be needed. This was one of
the main reasons why the European Space Research and
Technology Centre (ESTEG) decided to adapt SPICE
for distribution of navigation data to support science
data archiving on the Rosetta, Venus Express, and
SMART- 1 missions after its successful application for
Mars Express. It took a very short time for ESTEC’s
science archiving support team to modify the SPICE
production and distribution processes and infrastructure
established previously.

5. Future SPICE Development

Throughout its history SPICE evolved in many different
ways to meet the tactical and strategic needs of the
space engineering and science community by adding
new generic functionality, adapting additional
representation of data in existing subsystems, providing
implementation in other languages, and adding support
for new computer environments. This evolution
continues today with many on-going developments that
will directly benefit current and future SPICE users.
Among the new SPICE subsystems currently under
development are a comprehensive event finding
capability, representations for natural body shapes by
digital terrain model and tessellated plate model,
catalogue of sky objects, and ability to accumulate and
access SPICE data in application memory rather than in
kernel files. The SPICE development team is also
working on adding MATLAB and Java Native
Interfaces (JNI) interfaces to the system as well as
experimenting with various client-server architectures
that could provide network access to SPICE

functionality and the wealth of the data available on the
NAIF server.

6. Conclusions

Using SPICE opens the way to substantial reductions in
the cost of development of ground system software. The
fact that SPICE provides a way to store and access all
kinds of navigation and ancillary data makes it a “one-
stop-shop’’ and eliminates expenses associated with
maintaining multiple systems providing these kinds of
data. Extensive derived geometry parameter
computation capabilities available in SPICE lead to
substantial savings by eliminating the need for
developing software components implementing these
computations in the tool sets used by various ground
system functions. SPICE availability for less expensive
computer types, operating systems, and compilers
makes possible using these platforms throughout the
ground system, which might translate to substantial
saving in ground system hardware and third party
software acquisitions. The possibility for users to access
SPICE APIs from many different languages allows
development to be done in the language of the user’s
choice, making it more efficient and leading to savings
during the development cycle. Comprehensive
documentation and access to the source code facilitate
development and maintenance of SPICE-based user
applications by making all aspects of the SPICE system
transparent and eliminating any efforts that would have
been lost if it was a “black box”. Very high reliability of
SPICE code, resulting from rigorous testing by NAIF
and proven by everyday use by many active missions,
eliminates any operations costs that could result from
dealing with software bugs. The truly multi-mission
nature of SPICE allows for cost savings by developing
SPICE-based tools, both on data production and data
usage sides, that are applicable to all types of space
missions and are easily configurable for a new mission
or experiment. Finally, SPICE software and data are
free for individual users and are available “2417” on the
NAIF web and FTP servers.

More information about the SPICE system as well as
the SPICE toolkit and SPICE data for many past and
current planetary missions are available on the NAIF
Web Server: http://naif.jpl.nasa.gov.

7. References

[l] Acton, C. H. Ancillary data services of NASA‘s
Navigation and Ancillary Information Facility.
Planet. Space Sci., Vol44, No. 1, pp 65-70, 1996.

The work described in this paper has been conducted by
the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration.

